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Convergence of Dirichlet Measures and
the Interpretation of Their Parameter*

* Iby
Jayaram Sethuranan and Ram C. Tiwarit

The Florida State University

i. Introduction. The form of the Bayes estimate of the population

mean with respect to a Dirichlet prior with parameter a has given rise to

the interpretation that a(k) is the prior sample size. Furthermore, if

a(X) is made to tend to zero, then the Bayes estimate mathematically con-

verges to the classical estimator, namely the sample mean. This has

further given rise to the general feeling that allowing a(X) to become

small not only makes the 'prior sample size' small but also that it

corresponds to no prior information. By investigating the limits of

prior distributions as the parameter a tends to various values, we show

that it is misleading to think of a(X) as the prior sample size and the

smallness of a(X) as no prior information. In fact very small values of

a(X) actually mean that we have very definite information concerning the

unknown true distribution.-( ,
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2. The Dirichtet measure. Let (X, A) be separable metric spaCe Lcdes

endowed with the corresponding Borel a-field. Let P and MA be the orst

of probability measures and finite measures (countably additive) on *' ,

(X, A). The natural a-field, a(P), on P is the smallest a-field in P I

such that the function P F-> P(A) is measurable for each A in A. Ther- -

is also the notion of weak convergence in both P and 9, namely, or X a

if and only if Jgdar - fgda for all bounded continuous functions on X.

Under this convergence P becomes a separable complete metric space

(Prohorov [4]) and the a-field a(P) above is the Borel a-field in P.

To each non-zero measure a in M, we denote by " the corresponding normalized

measure, namely i(A) = a(A)/a(X), A e A.

In non-parametric Bayesian analysis, the 'true' probability measure

P takes values in P, is random and has a prior distribution. To facilitate

the use of standard probability theory we must view P as a measurable map

from some probability space (0, S. Q) into (P, a(P)) and the induced

measure QP-1 becomes the prior distribution. For any non-zero measure a

in M, the Dirichlet prior measure Da with parameter a, is defined as

follows (Ferguson [3]): For any finite measurable partition (A1, .... Ak )

of X, the distribution of (P(AI), ... , P(Ak)) under Da is the singular

Dirichlet distribution D(a(A1), ... , a(Ak)) defined on the k-dimensional

simplex as in Wilks [7] Section 7.7. Ferguson [3] used this definition

and also an alternate definition (See Theorem I of Ferguson [3]), and

derived many properties of Dirichlet priors and the corresponding Bayes

estimates of population parametcrs. Blackwell [11 and Blackwell and

MacQueen [2] have also given alternative definitions of the Dirichlet
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prior. We give below yet another definition of the Dirichlet prior which

is more general than the previous ones since we will not have to assume

that X is separable metric. Let a be a non-zero measure in M. Let

(0, S, Q) be a probability space rich enough to support two independent

sequences of i.i.d. random variables Y1 ' Y20 "'" and e1, 02, ... , where

Y is X-valued and has distribution iT and 01 is real valued and has a

Beta distribution with parameters 1 and a(X). Let p1 
= e1, P2 a e2(1'0l).

P3 ' 03 (1-01 )(1- 2) .... For any y in X let 6y stand for the degenerate

probability measure at y. Define the measurable map P from (0, S) into

'4
(P, oCP)) as follows:

P(A) Y p.6y(A). (1.1)

Then the induced distribution of P is the Dirichlet measure Da with

parameter a. The proof of this fact and that the standard properties

of Dirichlet measures can be deduced from this will be given elsewhere,

Sethuraman (S].

In the statistical problem of non-parametric Bayesian analysis we

have a random variable P taking values in P and whose distribution is D .

We also have a sample XI, ... , Xn, which are random variables taking values

in X. Given P, these are i.i.d. with common distribution P. It is re-

quired to estimate a fNnction O(P), and the Bayes estimator * with respect

to squared logs is given by

E(,(P)IX, .. ,X

In particular, if *(P) * * (P) where
-
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* (P) = fg(x)P(dx) (1.2)

where g is a real valued measurable function on X with fg2do < -, then the

Bayes estimate is given by

j a a(X)fg + gdFn (13)= a(x) +

where Fn is the empirical d.f. of X1 , ... , Xn (Ferguson (3]). In this if

we let a(X) - 0 we obtain the classical estimate fgdFn. Also the denominator

in this estimate is a(X) + n which is oCX) plus the sample size. These

facts have given rise to the interpretation that a(X) is the prior sample

size and allowing a(X) to tend to zero corresponds to no prior information.

In the next section we investigate what happens to Dirichlet measures

when their parameters are allowed to converge to certain values. In

section 4 we investigate what happens to Bayes estimates when the parameters

of the corresponding Dirichlet priors are allowed to converge to the zero

measure. From the results in these two sections it follows that small

values of a(X) actually correspond to certain definitive information about

P.

3. Convegnce of Dirichlet measures. In this section we study

the convergence of Dirichlet measures as their parameter is allowed to

converge in appropriate ways. Since (P, a(P)) is a separable complete

metric space endowed with its Borel a-field, we can talk about the usual

weak convergence of probability measures on (P, a(P)) and of Dirichlet

measures, in particular.
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THEOREM 3.1. Let 6 r ) be a sequence of measures in M and let the

sequence of normalized measures Gi ) be tight. Then the sequence (D.r of
r r

Dirichlet measures is tight.

PROOF. Fix c > 0. There exists a sequence of compact sets Kd in X

such that

sup a (K) 60/d3i 2, (3.1)

d -1, 2, .... Let

Md= {P: P(K5) lid), (3.2)

d 1, 2, ... and let

M n M d. (3.3)
d

Then clearly M is a compact subset of P in the weak topology. Now, by the

Chebysheff inequality

DQ (M) d ED (P(K5)) = d Gr(K5) 6e/w~d (3.4)

r

and

D(C) a d 6c/w 2d2 a e, for all r. (3.5)
r d

This proves that {D a is tight. 0
r

ThEOREM 3.2. Let (a r ) be a sequence of measures in M such that

sup IQr(A) - %(A)I * 0 (3.6)

A

where a is a non-zero measure in UA. Then D r converges to Dao weakly.
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PROOF. The proof of this result rests heavily on the constructive

definition of the Dirichlet measure in (1.1) and the following result

which is proved in Sethuraman [6].

Let (Br ) be a sequence of probability measures on an arbitrary measurable

space (V, B) and let

sup Ir (B) - 00(Bl o, (3.7)
0

where Bo is a probability measure on (V, B). Then there exists a sequence

of Y-valued random variables (Y} G with marginal distributions {Br} such

that

Prob. {Yr Yo 0 0 as r-. (3.8)

From (1.1) and the abov,.• result, we can find independent sequences of i.i.d.

random variables {yr}, (Or}, r - 0, 1, 2, ... such that the distribution

r r
of is the distribution of 0r is Beta with parameters 1 and a (),

1 r

r = 0, 1, ..., and

Prob. (Yr 0 Y) -0-0 (3.9)

and

prob. (0, r 0 0) o as r -, j • 1, 2. (.... . .10)
rr r r .. e

Furthermore, if p, a e1 , pJ a e(l-e. I ) (I-eF) for j k 1, and

J -

Jul
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then the distribution of pr is the Dirichlet measure D , r - 0, 1,.
r

From (3.11) it can be easily shown that, for any integer m,

rm m0

sup IP (A) -P0 (A)j :9 1 IP! -P p * I I(Yr,(Y
A j=l 3 3 j=l I

(3.12)

m m

2 cTcl-0) + 1T(1-0T).
j=l j=l I

From the construction above and (3.8), (3.9) and (3.12) and by first

choosing m appropriately and then allowing r to tend to - that

sup Ipr(A) - P°(A)I -, 0 in probability which is a stronger assertion than
A

made in the theorem, namely that D + D weakly. 0
.r ao

THEOREM 3.3. Let (a be a sequence of measures in M such that
r

ar(X) - 0 and sup I r(A) - 0o(A)j - 0 as r . , (3.13)
A

where a--o is a probability measure in P. Then the measures Da converge to a

r

random degenerate measure 6 where Yo has distribution a .
yoo

PROOF. As before we can construct independent sequences of i.1.d.

random variables {Ye and (.}, and an independent random variable Yo,
j 3

ha 0such that has distribution -- Y has distribution a0, the distribution

ofe r is Beta with parameters 1 and ar(X), r - 1. 2, .... and

I r

Prob. (YI r y ) 0 as r ". (3.14)

Furthermore, if p* = = . ( 1 . (1-0), for j > 1, and
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p r(A) = P ( (3.15)

then the distribution of Pr is the Dirichlet measure with parameter at,

r = 2,.

1-4 From (3.15), it is easily seen that

sup IPr(A) - o(A)I < I(Y r Y) 2(i_P). (3.16)

From (3.14) and the fact that a r(X) - 0, it follows that

sup 1pr (A) - 6 YO (A) -,- 0 in probability which again is stronger than the
AY

assertion of the theorem. 0

From Theorem 3.2 it is clear that allowing a rX) to tend to zero does

rnot correspond to no information on P. In fact if ar (X) * 0 and the nor-

malized measure a r converges in the strong sense of (3.13) to a probability

measure ao, then the information about P is that it is a probability measure

concentrated at a particular point in X which is chosen at random according

to Co" This is definitely very strong information about P and most probably

not of the type any statistician would be willing to make.

4. Convergence of Bayes estimates. In this section we are mainly

interested in the limits of Bayes estimates of various function f(P) as

(X) -+ 0. We will therefore make the following assumption throughout this

section:

a (X) - 0 and sup I-r(A) - o(A)j * 0, (4.1)
r A

where io is a probability measure in P. We will also be mainly concerned
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with a special class of functions *(P) as defined below. Let g be a

permutation invariant measurable function from Xk into R' such that

f ig(xl,...x1, x2 , ,.x 2 ,  ... xm)I d(x 1 ) ... da(x M) < (4.2)

for all possible combinations of arguments (x1, ... , xi, x2 , ... , x2,

x, . x ) from all distinct (m a k) to all identical (m a 1). Mhen

the function g vanishes whenever any two coordinates are equal, condition

(4.2) reduces to the simple condition

f Ig(x 1  .... , xk)l dC(x 1 ) .. dx k 4.3)

Define the parametric function

g(P) = f g(x , .... x)dP(x dP(x (4.4)

for all those P's for which it exists. Let P have D as the prior distri-
a

bution and let (XI, ..., Xn) be a sample from P. Under further assumptions

concerning the second moment of g under a the Bayes estimate (with respect

to squared error loss) of *g(P) based on the sample is

*n)g.a =E", (4.5)g~ D (*(9 Xi**X)ci n

and based on no sample is

0a = E (p)). (4.6)
g ED a(#~g()

Since the conditional distribution of P given (XI, ..., X ) is D+n F

n
where Pn is the empirical distribution function of (Xl, ... , Xn), we have

"n, .;o

9ga 9g,a~n n  (4.7)

Suppose that we substitute a a a r where (a r } satisfies (4.1). From the

results of section 3 we know that
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D a 6y 0weakly, (4.8)

and

D rinF D nF (4.9)

as r . =. The main result of this section pertains to the convergence of

the Bayes estimates ; and ;,

THEOREM 4.1. Let condition (4.1) hold. Let g be a continuous function

from xk into RI. Let g(xl, ... , X, x2, ... , x2, .., xm .... xm) be

-Muniformly integrable with respect to ar for all combinations of arguments

(xI, ... , x1 , , 2  x2 ... Xm, ... x m) from all distinct to all

identical. Then

0 *r J g .x ." x)d%(x) (4.10)

and

t9g'a r nFn 9gnF n a E Dn (g(Z1. .. Zk)) (4.11)

where (Ze, ..., Zk) is a sample from P where P has the distribution DnFn
n

PROOF. The easiest way to prove this result is to use the repre-

sentation (1.1) for the random probability measure P with a Dirichlet

distribution. The uniform integrability conditions on g with respect to

ar immediately show that * g (pr) is uniformly integrable with respect to D a
since it is the convex combination of uniformly integrable functions as

given below:
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r r r

9 ejl'' 'Dk3  ~ k 'I k

where yI, ... are i.i.d. with common distribution a- This fact and (4.8)

and (4.9) establish the results (4.10) and (4.11) of the theorem. 0

The results of this theorem generalize those of Ferguson [3] Section

5b and Se and Yamato [8], [9]. Also when g(x1, ... , xk) is such that it

vanishes whenever two coordinates are equal, it is easy to see that

o(k)

gnF n n g 'n

where Ug,n is the usual U statistic based on g and the sample (X, ... , X n).

This result is also contained in Yamato [8], [9].
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